At-a-Glance

- Technique & Clinical Cases
Dentatus Implant systems

Diameters: 1.8, 2.2, and 2.4 mm

<table>
<thead>
<tr>
<th>Thread Length (mm)</th>
<th>Total Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>14</td>
</tr>
<tr>
<td>Medium</td>
<td>17</td>
</tr>
<tr>
<td>Long</td>
<td>21</td>
</tr>
</tbody>
</table>
Placing The Implants

1. Drill Osteotomy
2. Initial Placement
3. Drive Implant
4. Fully Seat Anew Implant
Assembling the Temporary Restoration

1. Assemble Platform & Black Screwcap
2. Place the Temporary Crown
3. Fill with Composite
4. Light Cure
5. Finish & Secure with White Screwcap
6. Cut Down Screwcap & Plug with Composite
Clinical Case - Missing Laterals

1. Pre - Op

2. X-Ray of Tapering Roots

3. Anew Implants

4. Provisional Restoration

Photos courtesy of NYU
Clinical Case - Missing Centrals

Photos courtesy of Dr. Sang Choon Cho
Clinical Case - Pegged Lateral

Photos courtesy of Dr. Stuart Froum
Clinical Case
- Emergency Repair of Falling Bridge

Photos courtesy of Dr. Ziv Mazor
ANEW Kits & Components

Kits
- SK: Surgical Component Kit
- SK-2: Surgical Component Kit w/ Steri-Box Organizer
- CFR: ANEW Implants & Prosthetic Components for Single Unit Temporary Crowns
- SNP-2: Prosthetic Components for Multi-Unit Restorations
- ST-L: Prosthetic Components for Lab Customized Restorations

Implants

<table>
<thead>
<tr>
<th>Thread Length</th>
<th>7mm</th>
<th>10mm</th>
<th>14mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIA.</td>
<td>1.8</td>
<td>AT-185-R</td>
<td>AT-18M-R</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>AT-225-R</td>
<td>AT-22M-R</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>AT-245-R</td>
<td>AT-24M-R</td>
</tr>
</tbody>
</table>

Cat #
- 2: SR-1041: CePo Pilot Drill - Long
- 3: MR-1042: CePo Pilot Drill - Short
- 4: MR-1045: CePo Drill for 2.2 Implants
- 5: MR-1046: CePo Drill for 2.4 Implants
- 6: SR-111: Ti Platforms for Interim Single Units
- 7: SR-95: Resin Platforms for Interim Single Units
- 8: SR-111: Ti Platforms for Interim Crowns
- 9: SR-97: Resin Platforms for Temporary Crowns
- 10: SR-88: Impression Coping
- 11: SR-109: Resin Castable Platform
- 12: SR-75: Ti Screwcap
- 13: SR-75: Resin Screwcap - Black
- 14: SR-62: Resin Screwcap - White
- 15: SR-69: Screwcap Plug
- 16: SR-63: Fixed Analog
- 17: SR-123: Removable Analog
- 18: SR-61-2: Ti Connective Bar
- 19: SR-3: Screwcap Hand Driver
- 20: SR-48: Chisel End Screwcap Hand Driver
- 21: SR-59: Trephine Hollow Drill
- 23: SR-30: Waxed Hand Driver
- 24: SR-170-1: Long Screwcap Driver
- 25: SR-120: Manual Adaptor for R/A Driver
Narrow-Diameter Implants: A Restorative Option for Limited Interdental Space

Stuart J. Froum, DDS
Sang-Choon Cho, DDS
Young Sung Cho, DDS
Nicolas Elian, DDS
Dennis Tarnow, DDS

The present study reports on the results of the use of a screw-retained narrow-diameter implant (NDI) system as an option for implant placement in areas of limited bone volume. This retrospective report followed 48 NDIs in 27 patients for 1 to 5 years postloading. No implant failures were reported, yielding a 100% survival rate. The screw-retained attribute of this system allows retrievability of the restorations, which may require replacement because of porcelain fracture, chipping, or a desire to change color. The three diameters available—1.6 mm, 2.2 mm, and 2.4 mm—allow flexibility for a variety of narrow edentulous spaces. These NDIs present a cost-effective alternative for restoring limited spaces with implant restorations, without the bone augmentation or orthodontic procedures required for conventional fixed restorations. The NDI system is approved by the U.S. Food and Drug Administration for long-term use. (Int J Periodontics Restorative Dent 2007;27:449–455.)

*Clinical Professor, Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY.
*Clinical Assistant Professor, Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY.
*Private Practice, Jinju, South Korea.
*Assistant Professor Clinical Director, Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY.
*Professor and Chair, Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY.

Correspondence to: Dr Stuart J. Froum, 17 West 54th Street, Suite 1 C/D, New York, NY 10019; fax (212) 246-7599; e-mail: dfroum@verizon.net.
Histologic Evaluation of Bone-Implant Contact of Immediately Loaded Transitional Implants After 6 to 27 months

Stuart J. Froum, DDS1/Harel Simon, DMD2/Sang-Choon Cho, DDS3/
Nicholas Elian, DDS4/Michael D. Rohrer, DDS, MS5/Dennis P. Tarnow, DDS6

Purpose: Transitional implants (TIs) were developed as a method of providing fixed provisional restorations for the implant patient who wishes to avoid removable temporary restorations during implant healing. Success of TIs depends on achieving sufficient osseointegrated bone-to-implant contact (BIC) during the provisional prosthesis phase. To date, little data are available on the degree of BIC of these implants in function. The purpose of this study was to histologically evaluate the BIC of TIs following various periods of loading. Materials and Methods: Histologic analysis of 33 immediately loaded implants from 21 patients was performed. All TIs had turned machined surfaces and were made of commercially pure titanium (grade 1). These transitional implants were in function for an average of 10.8 months (range: 6 to 27 months). Before the definitive restoration was provided, all of the TIs were removed with trephine drills and sent for hard tissue histomorphometric analysis. Results: The average percentage of BIC was 52.9% ± 13.81% (range 25.1% to 83%). Discussion: Although TIs are traditionally removed when the definitive implants are restored, the BIC and clinical integration of the TIs in the present study may suggest a change in Ti protocol. Studies are indicated to examine long-term use of TIs as sole support or in conjunction with definitive implants in definitive implant-supported restorations. Conclusion: The percentage of BIC achieved with TIs was similar to that documented in the literature for conventional turned, machine-surfaced implants. Int J Oral Maxillofac Implants 2005;20:54–60

Key words: bone-to-implant contact, immediate loading, implant surfaces, transitional implants

Figs 3a to 3c: Photomicrograph of the Ti and surrounding bone (Sudan III and Van Gieson's picric fuchsins; original magnification x2). The Ti functioned for 8.5 months in the mandibular right second molar area of the patient in Fig 1 (Sudan III and Van Gieson's picric fuchsins; original magnification x2 for a and x4 for c).